Tools

Independence Sims

Linear

hyppo.tools.linear(n, p, noise=False, low=-1, high=1)[source]

Simulates univariate or multivariate linear data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

low : float, (default: -1)

The lower limit of the uniform distribution simulated from.

high : float, (default: -1)

The upper limit of the uniform distribution simulated from.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.

Notes

Linear \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\):

\[\begin{split}X &\sim \mathcal{U}(-1, 1)^p \\ Y &= w^T X + \kappa \epsilon\end{split}\]

Examples

>>> from hyppo.tools import linear
>>> x, y = linear(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 1)

Exponential

hyppo.tools.exponential(n, p, noise=False, low=0, high=3)[source]

Simulates univariate or multivariate exponential data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

low : float, (default: 0)

The lower limit of the uniform distribution simulated from.

high : float, (default: 3)

The upper limit of the uniform distribution simulated from.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.

Notes

Exponential \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\):

\[\begin{split}X &\sim \mathcal{U}(0, 3)^p \\ Y &= \exp (w^T X) + 10 \kappa \epsilon\end{split}\]

Examples

>>> from hyppo.tools import exponential
>>> x, y = exponential(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 1)

Cubic

hyppo.tools.cubic(n, p, noise=False, low=-1, high=1, cubs=[-12, 48, 128], scale=0.3333333333333333)[source]

Simulates univariate or multivariate cubic data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

low : float, (default: -1)

The lower limit of the uniform distribution simulated from.

high : float, (default: -1)

The upper limit of the uniform distribution simulated from.

cubs : list of ints (default: [-12, 48, 128])

Coefficients of the cubic function where each value corresponds to the order of the cubic polynomial.

scale : float (default: 1/3)

Scaling center of the cubic.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.

Notes

Cubic \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\):

\[\begin{split}X &\sim \mathcal{U}(-1, 1)^p \\ Y &= 128 \left( w^T X - \frac{1}{3} \right)^3 + 48 \left( w^T X - \frac{1}{3} \right)^2 - 12 \left( w^T X - \frac{1}{3} \right) + 80 \kappa \epsilon\end{split}\]

Examples

>>> from hyppo.tools import cubic
>>> x, y = cubic(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 1)

Joint Normal

hyppo.tools.joint_normal(n, p, noise=False)[source]

Simulates univariate or multivariate joint-normal data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.

Notes

Joint Normal \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): Let \(\rho = \frac{1}{2} p\), \(I_p\) be the identity matrix of size \(p \times p\), \(J_p\) be the matrix of ones of size \(p \times p\) and \(\Sigma = \begin{bmatrix} I_p & \rho J_p \\ \rho J_p & (1 + 0.5\kappa) I_p \end{bmatrix}\). Then,

\[(X, Y) \sim \mathcal{N}(0, \Sigma)\]

Examples

>>> from hyppo.tools import joint_normal
>>> x, y = joint_normal(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 2)

Step

hyppo.tools.step(n, p, noise=False, low=-1, high=1)[source]

Simulates univariate or multivariate step data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

low : float, (default: -1)

The lower limit of the uniform distribution simulated from.

high : float, (default: -1)

The upper limit of the uniform distribution simulated from.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.

Notes

Step \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\):

\[\begin{split}X &\sim \mathcal{U}(-1, 1)^p \\ Y &= \mathbb{1}_{w^T X > 0} + \epsilon\end{split}\]

where \(\mathbb{1}\) is the indicator function.

Examples

>>> from hyppo.tools import step
>>> x, y = step(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 1)

Quadratic

hyppo.tools.quadratic(n, p, noise=False, low=-1, high=1)[source]

Simulates univariate or multivariate quadratic data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

low : float, (default: -1)

The lower limit of the uniform distribution simulated from.

high : float, (default: -1)

The upper limit of the uniform distribution simulated from.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.

Notes

Quadratic \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\):

\[\begin{split}X &\sim \mathcal{U}(-1, 1)^p \\ Y &= (w^T X)^2 + 0.5 \kappa \epsilon\end{split}\]

Examples

>>> from hyppo.tools import quadratic
>>> x, y = quadratic(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 1)

W-Shaped

hyppo.tools.w_shaped(n, p, noise=False, low=-1, high=1)[source]

Simulates univariate or multivariate quadratic data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

low : float, (default: -1)

The lower limit of the uniform distribution simulated from.

high : float, (default: -1)

The upper limit of the uniform distribution simulated from.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.

Notes

W-Shaped \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\): \(\mathcal{U}(-1, 1)^p\),

\[\begin{split}X &\sim \mathcal{U}(-1, 1)^p \\ Y &= \left[ \left( (w^T X)^2 - \frac{1}{2} \right)^2 + \frac{w^T U}{500} \right] + 0.5 \kappa \epsilon\end{split}\]

Examples

>>> from hyppo.tools import w_shaped
>>> x, y = w_shaped(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 1)

Spiral

hyppo.tools.spiral(n, p, noise=False, low=0, high=5)[source]

Simulates univariate or multivariate spiral data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

low : float, (default: 0)

The lower limit of the uniform distribution simulated from.

high : float, (default: 5)

The upper limit of the uniform distribution simulated from.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.

Notes

Spiral \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\): \(U \sim \mathcal{U}(0, 5)\), \(\epsilon \sim \mathcal{N}(0, 1)\)

\[\begin{split}X_{|d|} &= U \sin(\pi U) \cos^d(\pi U)\ \mathrm{for}\ d = 1,...,p-1 \\ X_{|p|} &= U \cos^p(\pi U) \\ Y &= U \sin(\pi U) + 0.4 p \epsilon\end{split}\]

Examples

>>> from hyppo.tools import spiral
>>> x, y = spiral(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 1)

Bernoulli

hyppo.tools.uncorrelated_bernoulli(n, p, noise=False, prob=0.5)[source]

Simulates univariate or multivariate uncorrelated Bernoulli data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

prob : float, (default: 0.5)

The probability of the bernoulli distribution simulated from.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.

Notes

Uncorrelated Bernoulli \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\): \(U \sim \mathcal{B}(0.5)\), \(\epsilon_1 \sim \mathcal{N}(0, I_p)\), \(\epsilon_2 \sim \mathcal{N}(0, 1)\),

\[\begin{split}X &= \mathcal{B}(0.5)^p + 0.5 \epsilon_1 \\ Y &= (2U - 1) w^T X + 0.5 \epsilon_2\end{split}\]

Examples

>>> from hyppo.tools import uncorrelated_bernoulli
>>> x, y = uncorrelated_bernoulli(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 1)

Logarithmic

hyppo.tools.logarithmic(n, p, noise=False)[source]

Simulates univariate or multivariate logarithmic data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.

Notes

Logarithmic \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(\epsilon \sim \mathcal{N}(0, I_p)\),

\[\begin{split}X &\sim \mathcal{N}(0, I_p) \\ Y_{|d|} &= 2 \log_2 (|X_{|d|}|) + 3 \kappa \epsilon_{|d|} \ \mathrm{for}\ d = 1, ..., p\end{split}\]

Examples

>>> from hyppo.tools import logarithmic
>>> x, y = logarithmic(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 2)

Fourth Root

hyppo.tools.fourth_root(n, p, noise=False, low=-1, high=1)[source]

Simulates univariate or multivariate fourth root data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

low : float, (default: -1)

The lower limit of the uniform distribution simulated from.

high : float, (default: -1)

The upper limit of the uniform distribution simulated from.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.

Notes

Fourth Root \((X, Y) \in \mathbb{R}^p \times \mathbb{R}\):

\[\begin{split}X &\sim \mathcal{U}(-1, 1)^p \\ Y &= |w^T X|^\frac{1}{4} + \frac{\kappa}{4} \epsilon\end{split}\]

Examples

>>> from hyppo.tools import fourth_root
>>> x, y = fourth_root(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 1)

Sine \(4\pi\)

hyppo.tools.sin_four_pi(n, p, noise=False, low=-1, high=1)[source]

Simulates univariate or multivariate sine 4 \(\pi\) data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

low : float, (default: -1)

The lower limit of the uniform distribution simulated from.

high : float, (default: -1)

The upper limit of the uniform distribution simulated from.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.

Notes

Sine 4:math:pi \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{U}(-1, 1)\), \(V \sim \mathcal{N}(0, 1)^p\), \(\theta = 4 \pi\),

\[\begin{split}X_{|d|} &= U + 0.02 p V_{|d|}\ \mathrm{for}\ d = 1, ..., p \\ Y &= \sin (\theta X) + \kappa \epsilon\end{split}\]

Examples

>>> from hyppo.tools import sin_four_pi
>>> x, y = sin_four_pi(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 2)

Sine \(16\pi\)

hyppo.tools.sin_sixteen_pi(n, p, noise=False, low=-1, high=1)[source]

Simulates univariate or multivariate sine 16 \(\pi\) data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

low : float, (default: -1)

The lower limit of the uniform distribution simulated from.

high : float, (default: -1)

The upper limit of the uniform distribution simulated from.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.

Notes

Sine 16:math:pi \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{U}(-1, 1)\), \(V \sim \mathcal{N}(0, 1)^p\), \(\theta = 16 \pi\),

\[\begin{split}X_{|d|} &= U + 0.02 p V_{|d|}\ \mathrm{for}\ d = 1, ..., p \\ Y &= \sin (\theta X) + \kappa \epsilon\end{split}\]

Examples

>>> from hyppo.tools import sin_sixteen_pi
>>> x, y = sin_sixteen_pi(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 2)

Square

hyppo.tools.square(n, p, noise=False, low=-1, high=1)[source]

Simulates univariate or multivariate square data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

low : float, (default: -1)

The lower limit of the uniform distribution simulated from.

high : float, (default: -1)

The upper limit of the uniform distribution simulated from.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.

Notes

Square \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{U}(-1, 1)\), \(V \sim \mathcal{N}(0, 1)^p\), \(\theta = -\frac{\pi}{8}\),

\[\begin{split}X_{|d|} &= U \cos(\theta) + V \sin(\theta) + 0.05 p \epsilon_{|d|} \ \mathrm{for}\ d = 1, ..., p \\ Y_{|d|} &= -U \sin(\theta) + V \cos(\theta)\end{split}\]

Examples

>>> from hyppo.tools import square
>>> x, y = square(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 2)

Two Parabolas

hyppo.tools.two_parabolas(n, p, noise=False, low=-1, high=1, prob=0.5)[source]

Simulates univariate or multivariate two parabolas data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

low : float, (default: -1)

The lower limit of the uniform distribution simulated from.

high : float, (default: -1)

The upper limit of the uniform distribution simulated from.

prob : float, (default: 0.5)

The probability of the bernoulli distribution simulated from.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, 1) where n is the number of samples and p is the number of dimensions.

Notes

Two Parabolas \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\):

\[\begin{split}X &\sim \mathcal{U}(-1, 1)^p \\ Y &= ((w^T X)^2 + 2 \kappa \epsilon) \times \left( U = \frac{1}{2} \right)\end{split}\]

Examples

>>> from hyppo.tools import two_parabolas
>>> x, y = two_parabolas(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 2)

Circle

hyppo.tools.circle(n, p, noise=False, low=-1, high=1)[source]

Simulates univariate or multivariate circle data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

low : float, (default: -1)

The lower limit of the uniform distribution simulated from.

high : float, (default: -1)

The upper limit of the uniform distribution simulated from.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.

Notes

Circle \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{U}(-1, 1)^p\), \(\epsilon \sim \mathcal{N}(0, I_p)\), \(r = 1\),

\[\begin{split}X_{|d|} &= r \left( \sin(\pi U_{|d+1|}) \prod_{j=1}^d \cos(\pi U_{|j|}) + 0.4 \epsilon_{|d|} \right)\ \mathrm{for}\ d = 1, ..., p-1 \\ X_{|p|} &= r \left( \prod_{j=1}^p \cos(\pi U_{|j|}) + 0.4 \epsilon_{|p|} \right) \\ Y_{|d|} &= \sin(\pi U_{|1|})\end{split}\]

Examples

>>> from hyppo.tools import circle
>>> x, y = circle(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 2)

Ellipse

hyppo.tools.ellipse(n, p, noise=False, low=-1, high=1)[source]

Simulates univariate or multivariate ellipse data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

low : float, (default: -1)

The lower limit of the uniform distribution simulated from.

high : float, (default: -1)

The upper limit of the uniform distribution simulated from.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.

Notes

Ellipse \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{U}(-1, 1)^p\), \(\epsilon \sim \mathcal{N}(0, I_p)\), \(r = 5\),

\[\begin{split}X_{|d|} &= r \left( \sin(\pi U_{|d+1|}) \prod_{j=1}^d \cos(\pi U_{|j|}) + 0.4 \epsilon_{|d|} \right)\ \mathrm{for}\ d = 1, ..., p-1 \\ X_{|p|} &= r \left( \prod_{j=1}^p \cos(\pi U_{|j|}) + 0.4 \epsilon_{|p|} \right) \\ Y_{|d|} &= \sin(\pi U_{|1|})\end{split}\]

Examples

>>> from hyppo.tools import ellipse
>>> x, y = ellipse(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 2)

Diamond

hyppo.tools.diamond(n, p, noise=False, low=-1, high=1)[source]

Simulates univariate or multivariate diamond data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

low : float, (default: -1)

The lower limit of the uniform distribution simulated from.

high : float, (default: -1)

The upper limit of the uniform distribution simulated from.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.

Notes

Diamond \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{U}(-1, 1)\), \(V \sim \mathcal{N}(0, 1)^p\), \(\theta = -\frac{\pi}{4}\),

\[\begin{split}X_{|d|} &= U \cos(\theta) + V \sin(\theta) + 0.05 p \epsilon_{|d|}\ \mathrm{for}\ d = 1, ..., p \\ Y_{|d|} &= -U \sin(\theta) + V \cos(\theta)\end{split}\]

Examples

>>> from hyppo.tools import diamond
>>> x, y = diamond(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 2)

Multiplicative Noise

hyppo.tools.multiplicative_noise(n, p)[source]

Simulates univariate or multivariate multiplicative noise data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.

Notes

Multiplicative Noise \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(\U \sim \mathcal{N}(0, I_p)\),

\[\begin{split}X &\sim \mathcal{N}(0, I_p) \\ Y_{|d|} &= U_{|d|} X_{|d|}\ \mathrm{for}\ d = 1, ..., p\end{split}\]

Examples

>>> from hyppo.tools import multiplicative_noise
>>> x, y = multiplicative_noise(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 2)

Multimodal Independence

hyppo.tools.multimodal_independence(n, p, prob=0.5, sep1=3, sep2=2)[source]

Simulates univariate or multimodal independence data.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

prob : float, (default: 0.5)

The probability of the bernoulli distribution simulated from.

sep1, sep2: float, (default: 3, 2)

The separation between clusters of normally distributed data.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n, p) and (n, p) where n is the number of samples and p is the number of dimensions.

Notes

Multimodal Independence \((X, Y) \in \mathbb{R}^p \times \mathbb{R}^p\): \(U \sim \mathcal{N}(0, I_p)\), \(V \sim \mathcal{N}(0, I_p)\), \(U^\prime \sim \mathcal{B}(0.5)^p\), \(V^\prime \sim \mathcal{B}(0.5)^p\),

\[\begin{split}X &= \frac{U}{3} + 2 U^\prime - 1 \\ Y &= \frac{V}{3} + 2 V^\prime - 1\end{split}\]

Examples

>>> from hyppo.tools import multimodal_independence
>>> x, y = multimodal_independence(100, 2)
>>> print(x.shape, y.shape)
(100, 2) (100, 2)

K-Sample Sims

2-Sample Rotated Simulation

hyppo.tools.rot_2samp(sim, n, p, noise=True, degree=90)[source]

Rotates input simulations to produce a 2-sample simulation.

Parameters:
sim : callable()

The simulation (from the hyppo.tools module) that is to be rotated.

n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: True)

Whether or not to include noise in the simulation.

degree : float, (default: 90)

The number of degrees to rotate the input simulation by (in first dimension).

Returns:
samp1, samp2 : ndarray

Rotated data matrices. samp1 and samp2 have shapes (n, p+1) and (n, p+1) or (n, 2p) and (n, 2p) depending on the independence simulation. Here, n is the number of samples and p is the number of dimensions.

Examples

>>> from hyppo.tools import rot_2samp, linear
>>> x, y = rot_2samp(linear, 100, 1)
>>> print(x.shape, y.shape)
(100, 2) (100, 2)

2-Sample Translated Simulation

hyppo.tools.trans_2samp(sim, n, p, noise=True, degree=90, trans=0.3)[source]

Translates and rotates input simulations to produce a 2-sample simulation.

Parameters:
n : int

The number of samples desired by the simulation.

p : int

The number of dimensions desired by the simulation.

noise : bool, (default: False)

Whether or not to include noise in the simulation.

degree : float, (default: 90)

The number of degrees to rotate the input simulation by (in first dimension).

trans : float, (default: 0.3)

The amount to translate the second simulation by (in first dimension).

Returns:
samp1, samp2 : ndarray

Translated/rotated data matrices. samp1 and samp2 have shapes (n, p+1) and (n, p+1) or (n, 2p) and (n, 2p) depending on the independence simulation. Here, n is the number of samples and p is the number of dimensions.

Examples

>>> from hyppo.tools import trans_2samp, linear
>>> x, y = trans_2samp(linear, 100, 1)
>>> print(x.shape, y.shape)
(100, 2) (100, 2)

3-Sample Gaussian Simulation

hyppo.tools.gaussian_3samp(n, epsilon=1, weight=0, case=1)[source]

Generates 3 sample of gaussians corresponding to 5 cases.

Parameters:
n : int

The number of samples desired by the simulation.

epsilon : float, (default: 1)

The amount to translate simulation by (amount depends on case).

weight : float, (default: False)

Number between 0 and 1 corresponding to weight of the second Gaussian (used in case 4 and 5 to produce a mixture of Gaussians)

case : {1, 2, 3, 4, 5}, (default: 1)

The case in which to evaluate statistical power for each test.

Returns:
sims : list of ndarray

List of 3 2-dimensional multivariate Gaussian each corresponding to the desired case.

Examples

>>> from hyppo.tools import gaussian_3samp
>>> sims = gaussian_3samp(100)
>>> print(sims[0].shape, sims[1].shape, sims[2].shape)
(100, 2) (100, 2) (100, 2)

Time-Series Sims

Independent AR Process

hyppo.tools.indep_ar(n, lag=1, phi=0.5, sigma=1)[source]

Simulates two independent, stationary, autoregressive time series.

Parameters:
n : int

The number of samples desired by the simulation.

lag : float, optional (default: 1)

The maximum time lag considered between x and y.

phi : float, optional (default: 0.5)

The AR coefficient.

sigma : float, optional (default: 1)

The variance of the noise.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n,) and (n,) where n is the number of samples.

Notes

\(X_t\) and \(Y_t\) are univarite AR(1ag) with \(\phi = 0.5\) for both series. Noise follows \(\mathcal{N}(0, \sigma)\). With lag (1), this is

\[\begin{split}\begin{bmatrix} X_t \\ Y_t \end{bmatrix} = \begin{bmatrix} \phi & 0 \\ 0 & \phi \end{bmatrix} \begin{bmatrix} X_{t - 1} \\ Y_{t - 1} \end{bmatrix} + \begin{bmatrix} \epsilon_t \\ \eta_t \end{bmatrix}\end{split}\]

Examples

>>> from hyppo.tools import indep_ar
>>> x, y = indep_ar(100)
>>> print(x.shape, y.shape)
(100,) (100,)

Linear AR Process

hyppo.tools.cross_corr_ar(n, lag=1, phi=0.5, sigma=1)[source]

Simulates two linearly dependent time series.

Parameters:
n : int

The number of samples desired by the simulation.

lag : float, optional (default: 1)

The maximum time lag considered between x and y.

phi : float, optional (default: 0.5)

The AR coefficient.

sigma : float, optional (default: 1)

The variance of the noise.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n,) and (n,) where n is the number of samples.

Notes

\(X_t\) and \(Y_t\) are together a bivariate univarite AR(1ag) with \(\phi = \begin{bmatrix} 0 & 0.5 \\ 0.5 & 0 \end{bmatrix}\) for both series. Noise follows \(\mathcal{N}(0, \sigma)\). With lag (1), this is

\[\begin{split}\begin{bmatrix} X_t \\ Y_t \end{bmatrix} = \begin{bmatrix} 0 & \phi \\ \phi & 0 \end{bmatrix} \begin{bmatrix} X_{t - 1} \\ Y_{t - 1} \end{bmatrix} + \begin{bmatrix} \epsilon_t \\ \eta_t \end{bmatrix}\end{split}\]

Examples

>>> from hyppo.tools import cross_corr_ar
>>> x, y = cross_corr_ar(100)
>>> print(x.shape, y.shape)
(100,) (100,)

Nonlinear AR Process

hyppo.tools.nonlinear_process(n, lag=1, phi=1, sigma=1)[source]

Simulates two nonlinearly dependent time series.

Parameters:
n : int

The number of samples desired by the simulation.

lag : float, optional (default: 1)

The maximum time lag considered between x and y.

phi : float, optional (default: 1)

The AR coefficient.

sigma : float, optional (default: 1)

The variance of the noise.

Returns:
x, y : ndarray

Simulated data matrices. x and y have shapes (n,) and (n,) where n is the number of samples.

Notes

\(X_t\) and \(Y_t\) are together a bivariate nonlinear process. Noise follows \(\mathcal{N}(0, \sigma)\). With lag (1), this is

\[\begin{split}\begin{bmatrix} X_t \\ Y_t \end{bmatrix} = \begin{bmatrix} \phi \epsilon_t Y_{t - 1} \\ \eta_t \end{bmatrix}\end{split}\]

Examples

>>> from hyppo.tools import cross_corr_ar
>>> x, y = cross_corr_ar(100)
>>> print(x.shape, y.shape)
(100,) (100,)

Misc

Kernel Matrix Computation

hyppo.tools.compute_kern(x, y, metric='gaussian', workers=1, **kwargs)[source]

Compute kernel similarity matrix for the input matrices.

Parameters:
x, y : ndarray

Input data matrices. x and y must have the same number of samples. That is, the shapes must be (n, p) and (n, q) where n is the number of samples and p and q are the number of dimensions. Alternatively, if x and y can be distance matrices, where the shapes must both be (n, n), no kernel will be computed.

metric : str, optional (default: "gaussian")

A function that computes the distance among the samples within each data matrix. Valid strings for metric are, as defined in sklearn.metrics.pairwise.pairwise_kernels,

['additive_chi2', 'chi2', 'linear', 'poly', 'polynomial', 'gaussian', 'laplacian', 'sigmoid', 'cosine']

Set to None or precomputed if x and y are already distance matrices. To call a custom function, either create the distance matrix before-hand or create a function of the form metric(x, **kwargs) where x is the data matrix for which pairwise distances are calculated and kwargs are extra arguements to send to your custom function.

workers : int, optional (default: 1)

The number of cores to parallelize the p-value computation over. Supply -1 to use all cores available to the Process.

**kwargs : optional

Optional arguments provided to sklearn.metrics.pairwise.pairwise_kernels or a custom kernel function.

Returns:
simx, simy : ndarray

Similarity matrices based on the metric provided by the user.

Distance Matrix Computation

hyppo.tools.compute_dist(x, y, metric='euclidean', workers=None, **kwargs)[source]

Compute kernel similarity matrix for the input matrices.

Parameters:
x, y : ndarray

Input data matrices. x and y must have the same number of samples. That is, the shapes must be (n, p) and (n, q) where n is the number of samples and p and q are the number of dimensions. Alternatively, if x and y can be distance matrices, where the shapes must both be (n, n), no kernel will be computed.

metric : str, optional (default: "gaussian")

A function that computes the distance among the samples within each data matrix. Valid strings for metric are, as defined in sklearn.metrics.pairwise_distances,

  • From scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’, ‘manhattan’] See the documentation for scipy.spatial.distance for details on these metrics.
  • From scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘correlation’, ‘dice’, ‘hamming’, ‘jaccard’, ‘kulsinski’, ‘mahalanobis’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’] See the documentation for scipy.spatial.distance for details on these metrics.

Set to None or precomputed if x and y are already distance matrices. To call a custom function, either create the distance matrix before-hand or create a function of the form metric(x, **kwargs) where x is the data matrix for which pairwise distances are calculated and kwargs are extra arguements to send to your custom function.

workers : int, optional (default: 1)

The number of cores to parallelize the p-value computation over. Supply -1 to use all cores available to the Process.

**kwargs : optional

Optional arguments provided to sklearn.metrics.pairwise_distances or a custom kernel function.

Returns:
distx, disty : ndarray

Distance matrices based on the metric provided by the user.

Permutation Test

hyppo.tools.perm_test(calc_stat, x, y, reps=1000, workers=1, is_distsim=True, perm_blocks=None)[source]

Calculate the p-value for a nonparametric test via permutation.

This process is completed by first randomly permuting \(y\) to estimate the null distribution and then calculating the probability of observing a test statistic, under the null, at least as extreme as the observed test statistic.

Parameters:
calc_stat : callable()

The method used to calculate the test statistic (must use hyppo API)

x, y : ndarray

Input data matrices. x and y must have the same number of samples. That is, the shapes must be (n, p) and (n, q) where n is the number of samples and p and q are the number of dimensions. Alternatively, x and y can be distance matrices, where the shapes must both be (n, n).

reps : int, optional (default: 1000)

The number of replications used to estimate the null distribution when using the permutation test used to calculate the p-value.

workers : int, optional (default: 1)

The number of cores to parallelize the p-value computation over. Supply -1 to use all cores available to the Process.

is_distsim : bool, optional (default: True)

Whether or not x and y are distance or similarity matrices. Changes the permutation style of y.

Returns:
stat : float

The computed test statistic.

pvalue : float

The computed p-value.

pvalue : float

The approximated null distribution of shape (reps,).

Chi-Squared Approximation

hyppo.tools.chi2_approx(calc_stat, x, y)[source]

Calculate the p-value for Dcorr and Hsic via a chi-squared approximation.

In the case of distance and kernel methods, Dcorr (and by extension Hsic [2]) can be approximated via a chi-squared distribution [#1ChiSq]. This approximation is also applicable for the nonparametric MANOVA via independence testing method in our package [3].

Parameters:
calc_stat : callable()

The method used to calculate the test statistic (must use hyppo API).

x, y : ndarray

Input data matrices. x and y must have the same number of samples. That is, the shapes must be (n, p) and (n, q) where n is the number of samples and p and q are the number of dimensions. Alternatively, x and y can be distance matrices, where the shapes must both be (n, n).

Returns:
stat : float

The computed test statistic.

pvalue : float

The computed p-value.

References

[1]Shen, C., & Vogelstein, J. T. (2019). The Chi-Square Test of Distance Correlation. arXiv preprint arXiv:1912.12150.
[2]Shen, C., & Vogelstein, J. T. (2018). The exact equivalence of distance and kernel methods for hypothesis testing. arXiv preprint arXiv:1806.05514.
[3]Panda, S., Shen, C., Perry, R., Zorn, J., Lutz, A., Priebe, C. E., & Vogelstein, J. T. (2019). Nonparametric MANOVA via Independence Testing. arXiv e-prints, arXiv-1910.