K-Sample¶
Nonpar MANOVA via Independence Testing¶
-
class
hyppo.ksample.
KSample
(indep_test, compute_distance='euclidean', bias=False, **kwargs)[source]¶ Class for calculating the k-sample test statistic and p-value.
A k-sample test tests equality in distribution among groups. Groups can be of different sizes, but generally have the same dimensionality. There are not many non-parametric k-sample tests, but this version cleverly leverages the power of some of the implemented independence tests to test this equality of distribution.
Parameters: - indep_test : {"CCA", "Dcorr", "HHG", "RV", "Hsic", "MGC"}
A string corresponding to the desired independence test from
mgc.independence
. This is not case sensitive.- compute_distance : callable(), optional (default: euclidean)
A function that computes the distance among the samples within each data matrix. Set to None if x and y are already distance matrices. To call a custom function, either create the distance matrix before-hand or create a function of the form
compute_distance(x)
where x is the data matrix for which pairwise distances are calculated.- bias : bool (default: False)
Whether or not to use the biased or unbiased test statistics. Only applies to
Dcorr
andHsic
.
Notes
The formulation for this implementation is as follows [1]:
The k-sample testing problem can be thought of as a generalization of the two sample testing problem. Define \(\{ u_i \stackrel{iid}{\sim} F_U,\ i = 1, ..., n \}\) and \(\{ v_j \stackrel{iid}{\sim} F_V,\ j = 1, ..., m \}\) as two groups of samples deriving from different distributions with the same dimensionality. Then, problem that we are testing is thus,
\[\begin{split}H_0: F_U &= F_V \\ H_A: F_U &\neq F_V\end{split}\]The closely related independence testing problem can be generalized similarly: Given a set of paired data \(\{\left(x_i, y_i \right) \stackrel{iid}{\sim} F_{XY}, \ i = 1, ..., N\}\), the problem that we are testing is,
\[\begin{split}H_0: F_{XY} &= F_X F_Y \\ H_A: F_{XY} &\neq F_X F_Y\end{split}\]By manipulating the inputs of the k-sample test, we can create concatenated versions of the inputs and another label matrix which are necessarily paired. Then, any nonparametric test can be performed on this data. That is,
Letting \(n = \sum_{i=1}^k n_i\), define new data matrices \(\mathbf{x}\) and \(\mathbf{y}\) such that,
\[\begin{split}\begin{align*} \mathbf{x} &= \begin{bmatrix} \mathbf{u}_1 \\ \vdots \\ \mathbf{u}_k \end{bmatrix} \in \mathbb{R}^{n \times p} \\ \mathbf{y} &= \begin{bmatrix} \mathbf{1}_{n_1 \times 1} & \mathbf{0}_{n_1 \times 1} & \ldots & \mathbf{0}_{n_1 \times 1} \\ \mathbf{0}_{n_2 \times 1} & \mathbf{1}_{n_2 \times 1} & \ldots & \mathbf{0}_{n_2 \times 1} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_{n_k \times 1} & \mathbf{0}_{n_k \times 1} & \ldots & \mathbf{1}_{n_k \times 1} \\ \end{bmatrix} \in \mathbb{R}^{n \times k} \end{align*}\end{split}\]Additionally, in the two-sample case,
\[\begin{split}\begin{align*} \mathbf{x} &= \begin{bmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \end{bmatrix} \in \mathbb{R}^{n \times p} \\ \mathbf{y} &= \begin{bmatrix} \mathbf{0}_{n_1 \times 1} \\ \mathbf{1}_{n_2 \times 1} \end{bmatrix} \in \mathbb{R}^n \end{align*}\end{split}\]Given \(\mathbf{u}\) and \(\mathbf{v}\) as defined above, to perform a \(w\)-way test where \(w < k\),
\[\begin{split}\mathbf{y} = \begin{bmatrix} \mathbf{1}_{n_1 \times 1} & \mathbf{0}_{n_1 \times 1} & \ldots & \mathbf{1}_{n_1 \times 1} \\ \mathbf{1}_{n_2 \times 1} & \mathbf{1}_{n_2 \times 1} & \ldots & \mathbf{0}_{n_2 \times 1} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_{n_k \times 1} & \mathbf{1}_{n_k \times 1} & \ldots & \mathbf{1}_{n_k \times 1} \\ \end{bmatrix} \in \mathbb{R}^{n \times k}.\end{split}\]where each row of \(\mathbf{y}\) contains \(w\) \(\mathbf{1}_{n_i}\) elements. This leads to label matrix distances proportional to how many labels (ways) samples differ by, a hierarchy of distances between samples thought to be true if the null hypothesis is rejected.
Performing a multilevel test involves constructing :math:x` and \(y\) using either of the methods above and then performing a block permutation [2]. Essentially, the permutation is striated, where permutation is limited to be within a block of samples or between blocks of samples, but not both. This is done because the data is not freely exchangeable, so it is necessary to block the permutation to preserve the joint distribution [2].
The p-value returned is calculated using a permutation test using a permutation test. The fast version of the test (for \(k\)-sample Dcorr and Hsic) uses a chi squared approximation.
References
[1] Panda, S., Shen, C., Perry, R., Zorn, J., Lutz, A., Priebe, C. E., & Vogelstein, J. T. (2019). Nonparametric MANOVA via Independence Testing. arXiv e-prints, arXiv-1910. [2] (1, 2) Winkler, A. M., Webster, M. A., Vidaurre, D., Nichols, T. E., & Smith, S. M. (2015). Multi-level block permutation. Neuroimage, 123, 253-268. -
test
(self, *args, reps=1000, workers=1, auto=True)[source]¶ Calculates the k-sample test statistic and p-value.
Parameters: - *args : ndarrays
Variable length input data matrices. All inputs must have the same number of samples. That is, the shapes must be (n, p) and (m, p) where n and m are the number of samples and p are the number of dimensions. Alternatively, inputs can be distance matrices, where the shapes must all be (n, n).
- reps : int, optional (default: 1000)
The number of replications used to estimate the null distribution when using the permutation test used to calculate the p-value.
- workers : int, optional (default: 1)
The number of cores to parallelize the p-value computation over. Supply -1 to use all cores available to the Process.
- auto : bool (default: True)
Automatically uses fast approximation when sample size and size of array is greater than 20. If True, and sample size is greater than 20, a fast chi2 approximation will be run. Parameters
reps
andworkers
are irrelevant in this case. Only applies toDcorr
andHsic
.
Returns: - stat : float
The computed k-Sample statistic.
- pvalue : float
The computed k-Sample p-value.
Examples
>>> import numpy as np >>> from hyppo.ksample import KSample >>> x = np.arange(7) >>> y = x >>> z = np.arange(10) >>> stat, pvalue = KSample("Dcorr").test(x, y) >>> '%.3f, %.1f' % (stat, pvalue) '-0.136, 1.0'